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l. INTRODUCTION

One of the purposes of this paper is to give a new proof of a theorem on
singularity of Birkhoff interpolation matrices (Lorentz 13, 4 I, Karlin and
Karon 12]}-our Theorem 22 (compare Section 9 for the history of this
theorem). A new proof is necessary, because that of [3] gives only ordinary
singularity and is somewhat sketchy, and paper [2], which purports to prove
strong singularity, contains a serious error. Our proof is almost identical
with one given in the 1975 report [5 I. The novel feature of our paper is the
switch from the system of powers S = 11, x, ... , x n

~ to an "arbitrary" systems
of functions S = 19o" .. ,gnf. This is achieved by considering "Birkhoff
systems." The importance of this notion, first of all, is that the Atkin­
son-Sharma theorem of regularity is valid exactly for Birkhoff systems. On
the other hand, all singularity theorems known at present (see [6, Sect. 5 j)
are valid also for Birkhoff systems. A Birkhoff system is always an extended
Chebyshev system, The converse, although not true, holds locally (see
Section 6). This allows the conclusion that all known singularity theorems
apply to extended Chebyshev systems. This indirect approach seems to be
necessary, since the earlier proofs [3, 2] are only for algebraic polynomials.

There are two ways to prove the basic singularity theorem. The method of
independent knots has been introduced for this purpose by Lorentz and
Zeller 171 and further developed by Lorentz 13,5, 11].

The other approach is by means of coalescence, a notion used implicitly
by Ferguson [1], developed by Karlin and Karon [21 and Lorentz and Zeller
181. The disadvantage of the method of coalescence in the proof of our
theorem has been pointed out by S. D. Riemenschneider. This method
requires differentiability of functions gk E S of very high order. If a is the
coefficient of collision of two rows (see 16, Sect. 3 j), then the application of
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the method requires differentiability of gk of order at least a. (Derivatives of
orders >n disappear from the formulas only after coalescence). Since a
could be as large as tn l

, the method requires that all gk E S be differentiable
of this order! This is one of the reasons why we use the method of
independent knots in this paper. The other is that it is of some interest in
itself.

The basic notions of Birkhoff interpolation (see, for example, 16 j) are as
follows.

Let S= jgn"'" gn~ be a set of linearly independent functions on la,bj,
that are n times continuously differentiable. Let E = (e ik ) be an m X (n + 1)
interpolation matrix of O's an6 I's which is normal (that is, has n + I ones),
let X: x I < ... <X m be a set of knots in [a, b I. Linear combinations
p = L.~ ak gk we call polynomials. A Birkhoff problem is to find a
polynomial P satisfying p(k)(x;) = Cik ' where Cik are given numbers, and this
relation is required for all pairs (i, k) for which e ik = 1. If this problem is
solvable for all choices of Cik ' the pair E, X is regular (poised), otherwise it
is singular. The former is the case if and only if each P annihilated by E, X
(that is, satisfying plk\X;) = °for eik = I) is identically zero, and if and only
if the (n + I) X (n + I) determinant

(l.l )

is not zero. Matrix E is regular if all possible pairs E, X are regular. Conse­
quently, E is singular if for some X, the determinant (1.1) vanishes. Further,
E is strongly singular if D(E, X) changes sign for sets of knots X in [a, b I,
and conditionally regular, if D(E, X) *' °for some X in [a, b I.

LetMk be the number of ones in columns 0, I, .... k of E. Matrix E satisfies
the P61ya (Birkhoff) condition if M k ;) k + I, k = 0,... , n (resp. M k ;) k + 2,
k = 0.... , n - I). A P6lya (Birkhoff) matrix E is a normal matrix that
satisfies the P61ya (Birkhoff) condition. The following two theorems are
known if S = 11. x,... , xn~:

THEOREM A (Birkhoff-Ferguson-Nemeth). A normal interpolation
matrix E is conditionally regular if and only if E is a Polya matrix. (The
"only if' statement holds for arbitrary S.)

A decomposition of E is a vertical decomposition into normal inter­
polation matrices. The canonical decomposition of E is the finest decom­
position of this kind. A sequence E of E is a maximal block of 1's in one of
the rows of E. If e ioq = I is the first one of E, we call E supported, if there
exist e ik = I with k < q and both i < in and i > in. A subclass are essentially
supported sequences E of E, which are supported within the matrix of the
canonical decomposition of E to which E belongs.
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THEOREM B (Atkinson-Sharma). A Polya matrix without odd essentiall:~'

supported sequences is regular with respect to the set S = ~ 1, x, ... , x lf f.

The proof of this is based on the following form of Rolle's theorem:

THEOREM C (Rolle's Theorem). Let / be a p times continuously
difJerentiable function on la, b I, p ~ 1, then between any two adjacent zeros
all there is an odd number 0/ zeros 0/f' (counting multiplicities), or a zero
0//<1".

2. ROLLE EXTENSIONS

Rolle's theorem can be useful also in situations when odd supported
sequences are present, but there are only few of them or when their influo::nce
is weak. To pursue this idea we need the notion of Rolle extensions.

Let E be an m X (n + 1) interpolation matrix, and/be an n-times differen·
tiable function on la. b I which is annihilated by E and
X = (Xl .... ' x l1l ) cia, b j, that is, let / satisfy

whenever ei/ = 1 in E. (2.1 )

The pair (E, X) defines Eqs. (2.1) and conversely. We shall often identify
this pair with the equations. From the zeros of/and its derivatives specified
by (2.1), we can derive further zeros by means of Rolle's theorem. A
selection of a complete set of such zeros is called a Rolle extension 0/ Eqs.
(2.1). This is a pair (it, X) with the corresponding equations

in it, (2.2 )

which contain all of (2.1), but in general also some additional equations. The
extension is not unique. The formal definition is as follows.

A Rolle extension .Ji' = (it, X) for a function / annihilated by the pair
(E, X) (or for Eqs. (2.1)) is obtained by selecting by induction Rolle
extensions .Ji'k = (EK, X k

) for each k = 0, I,.... n. Here, E k
lS an

m k X (n - k + I) matrix (with columns numbered k, k -+- 1,... , n), and
equations of .Ji'k contain all Eqs. (2.1) with I ~ k.

Equations of .>fa are simply the set (2.1). If .>fa,... , .Ji'k have been already
selected, we choose a pair (E k + I, X k ~ I) = ,'k'k ' I according to the following
prescriptions:

1. It contains all equations of (E\X k
) for derivativesf"', I~k + 1.

2. Between any two adjacent zeros a < fJ of f<kJ belonging to . ji\, we
select if possible, a zero of f(k + I J, not listed in .9/k' This could be (a) a new
zero ~ of flk+ I>, or (b) a new zero ~ of f(/), I> k + 1, if equations
f(k+l(~)=O,...J(/-I)(~)=O are contained in .Ji'k' In this case the
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multiplicity of ~ as zero of j<k' I), which is acknowledged by Ylk, is
increased by at least one.

3. If for a pair a < (J this is impossible, we register a loss and do not add a
new equation to :llk for the pair a, (J.

The Rolle extension ,Y; consists of all equations contained in all ,9fk ,

k = 0, 1,... , n. In other words, Eqs. (2.2) of .9t for a given I, 1= 0,..., n consist
of the equations for f U

) which belong to the extension .91,. A Rolle extension
constructed without losses at any of its steps is called maximal. An
extension ,J/! in which 2(b) has never been used, is called an extension
without duplication. A function f may have many Rolle extensions ,~', some
of them may be maximal, while others are not maximal.

Some properties of Rolle extensions are immediate consequences of the
selection procedure. A root r, of flk) in Jfk of multiplicity a, is also a root of
flk +]) in .9tk+ I' of multiplicity exactly a-I. A new root ~ of f(kT I) selected

by 2(a) or 2(b), has in ,Pk + 1 a multiplicity not less than r + 1, if r is the
multiplicity of flk+ [)(~) = 0, acknowledged by ,llk (r = °in case 2(a)). This
multiplicity will be greater than r + 1 exactly whenllk contains also the
equation fU + 1) (~) = °(see 2(b)).

It follows also that the matrix E k + 1 contains as a submatrix the last n - k
columns of E k (hence also the last n - k columns of E). In part (2) of the
construction, for given a < (J, ~ can be found (there is no loss) if we assume
that rows of E for which a < Xi <(J, have no odd supported sequences. This
follows at once from Rolle's Theorem C. In particular:

LEMMA I. If the matrix E has no odd supported sequences, then all
Rolle extensions of a function f, annihilated by E, X, are maximal.

We also have:

LEMMA 2. A maximal Rolle extension !)! of a pair E, X, has the
properties: (i) If E satisfies the P61ya condition M, >I + 1 for 0< 1< ko'
then also all matrices E\ k <k o satisfy this condition for 1< k; (ii) if E is a
P61ya matrix, then all E k are P61ya matrices.

Under certain conditions, we can find a simple formula for the number of
equations for flk) in !}!. Let mk, M k, k = 0, 1,..., n be the P61ya functions of

E, let J1 I = °and

We have then

k= 1,... , n. (2.4 )
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In particular, if E is a P61ya matrix, we can drop all subscripts in these
formulas; then

k .,.= 0,... , n. (2.5 )

LEMMA 3. Let.R be a maximal Rolle extension of Eqs. (2.1) obtained
without duplication. Then the number of equations for Jlk) in ,9f

k
is exactly

,11 k •

Proof Let this be true for some k. Then the number of adjacent pairs of
zeros a < /f of f'k) in Jfk is (Pk - I) + ' hence the number of different zeros of
( lk.ll· h . f·,;.., . ("
, In t e constructIOn 0 '/[K+ I IS If'k - I), + mk + I =f.1k' ,.

COROLLARY 4. Let 1, annihilated by E, X be such that at each step
k = 0,..., n, Rolle zeros off can be chosen to avoid all Xi' i,* iO" Let row iIJ ,

1 < io < m of E have no odd supported sequences, and let E satisfy the
BirkhojJ condition for all k with °~ k < ko. There is then a Rolle extension
R of E, X having for each k ~ k o either ,11 k or f.1k - 1 Rolle zeros. The last
case can happen only if e iok = 1 belongs to an (even) supported sequence.

Indeed, in constructing .'J/\, we always have f.1k = (Pk I I), +mk zeros
until there is duplication at some level k. This means that in (2) we have
flk Il(a) = /k- Il(jJ) = 0, a < Xi" < f3 and that Rolle's theorem produces a

zero fU\x;) = 0, I > k + I, according to (2b). Then for k ~ j < I we have

Ilj -- 1 = (Pj I - 2L + mj Rolle zeros, for j = I again III zeros, and so on.

3. AN AUXILLlARY THEOREM

In Section 8 we shall need relations between the number of Rolle zeros of
E and of different matrices derived from E. Let 1 < i < m be fixed. Let E' be
the io X (m + 1) matrix consisting of the rows i = 1,2,... , i() of E, and E" be
the (m - io + 1) X (n + 1) matrix consisting of the rows i = io,... , m of E. If
m k , mk and m~ are the respective P61ya functions for E, E' and E", then

k =0,1,... , n. (3.1 )

Let f.1k' Ilk and Il~ be the numbers defined by (2.3) for the matrices E, E' and
E", respectively.

THEOREM 5. (i) Assume that the matrix E satisfies the BirkhojJ
condition for its columns k = 0. 1,... , k() - 1. Then

k = 0,... , k(). (3.2)
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(ii) Moreover, if ei".k
ll

- 1= 0, then equality holds in (3.2) ifand only if
ei.k = 0. °~ k < ko,/or either (a) all i < io, or else (b) all i> il)'

Proof By the Birkhoff condition and (2.5), 11k >2 for °~ k < ko Thus.
(Uk - I), = f.1k - I, k = 0,... , klJ' The proof is carried out by induction. It is
clear that (3.2) holds for k = 0. Let

(3.3 )

By (2.4) and (3.1) we have

k = 0,.... kl) - I. (3.4)

LEMMA 6. (i) One has Ok> 0, k = 0, ko,... , ko• (ii) Iffor some k ~ ko•

Ok = 0, then 0, =°for aliI ~ k.

Proof Clearly we have one of the three (not mutually exclusive) cases.

Case I. f.1~ "f.17 ,~1. Then from (3.4), Ok =f.1k ,- 1> 1, and we have
(i).

Case 2. One of the f.1~-I' f.17-1 is equal zero, and the other is >1, for

example. let f.1~- 1> I, f.17 1= 0. Then, again by (3.4 ), Ok = f.1k - I -- f.1~ _ I'

Since ei".k 1~ f.17 I' we have ei".k 1 = 0, and by (3.3), 0k- [ = f.1k I -- f.1~- [.
hence we have 0k_ [ = Ok'

Case 3. Letf.1~ 1'f.17 ,> I. Then from (3.3), (3.4).

(3.5 )

In this case, Ok 1 ~ Ok'
Now (i) follows by induction, from (1) > 1. After (i) has been established.

if Ok = 0. case I cannot happen, and in the other two cases we have

Ok-I =0. Thus 0,=0, l~k.

LEMMA 7. Let Ok = 0, k > 0, and let the Birkhoff condition be satisfied
for E for all columns I ~ k. (i) If ei".k _ 1 = 0, then either f.1~ _ I = f.1k _1 >2,
f.17 1=0, or /l~-I =0, f.17-1 =f.1k-1 >2. (ii) Iff.17=ei"k=m'k (=0 or I), then
f.1~ - 1 = f.1 k- 1 >2, f.1Z- I = ei".k _ I = m7 _ 1 (=0 or 1).

Proof (i) Case 1 of Lemma 6 is impossible, and also Case 3, since Eqs.
(3.5) together with Ok_I = Ok =°would imply e io •k - I = 1. Hence one of the
numbers f.1~ _If.1Z-1 is >2. and the other is zero. Let, for example, f.1~ -I > 2.
Then (3.4) gives °= Ok = f.1k _ 1 - f.1~ I' and (i) follows.
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(ii) We need to consider only the case ei".k I = I. From ei"k ==

(PZ I - I) t + mZ we derive (PZ I -- I) I = 0, that is, f.1Z I = 0 or = I. Then

f.1Z I = (PZ ,- I) I + mZ 1

and mZ I ~ I imply f.1Z I = I = mZ I' which is the second part of assertion
(ii). The first part follows from O=ak=f.1k··,U~.

It is clear that from (i). (ii), and a statement symmetric to (ii), one derives
Theorem 5 by induction.

4. MARKOV'S INEQUALITY AND ApPLICATIONS

Construction of independent sets of knots in Section 5 will be based on a
weak form of Markov's inequality. This inequality makes it possible to
guarantee (Theorem I I) the existence of a Rolle zero of a derivative that is
not too close to the given zeros of the function.

Let S = 1go ..... gn} be a system of n times continuously differentiable
functions on la. b]. In the rest of this paper we shall always assume that the
functions gk are linearly independent on each subinterval lal,b l ) of la,bl.
For example, Birkhoff systems (see Section 6) have this property.

But we need more. For each k = I .... , n, let the reduced set of derivatives
Slkl for [al' bll consist of those gjki that are not identically zero on [al' bll.
We shall assume that the sets Slkl with respect to la, b] consist of linearly
independent functions on each subinterval of Ia, b J. This assumption is less
restrictive than it might appear: each set S has this property locally. More
exactly:

PROPOSITION 8. Let the functions of S be linearly independent on each
subinterval of lao bl. Then there exists a new basis (also denoted by go,'''' gil)
in the linear hull of S and an interval lao, bo1cia. b l,Jor which all reduced
sets Sikl are linearly independent on each subinterval of Iall' boJ.

Proof We construct the basis go,'''' gil and the interval [all' bol by
induction. Let the required conditions be satisfied for S(1).... , Sik' I I on
1k_I = Iak !' bk I]' This means that there is a basis go ..... gn for which
Ik-l1_0 '-0 1 1 h'l Ik-11 Ik··I) l' Igj =. }- ,...,p - on k I. W 1 e gp .... , gn are mear y

independent on each subinterval la,,8] of I k I' We consider two cases: (I)
On no subinterval of Ik_I' does the linear hull lin Sik-II contain constants.
Then we take [k = la k, bk1= [k-I' None of the functions g)kl. j ~ p can
vanish identically on Ia,,8] elk' hence Slkl = {g~kl ,.... g~kl} is the reduced set
of derivatives for la, ,8J. If there is a relation apg~kl + ... + an g~ki == 0 on
la, ,8], then. integrating, a + apg~k- I I + ... + an g~,k I) == O. Here a = O. since
lin Slk- II does not contain constants, and by inductive assumption a i = O.
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j~p. Thus, gjkl,j~p are linearly independent on [a,PI. (2) If linS 1k
-

11

contains constants on some subinterval of I k I' let I k be this subinterval.
Changing gp"'" gn to some other basis, we can assume that g~k-l) == I on Ik,
then the linear hull of g~k+-ll),... , g~k-l) does not contain constants on any
subinterval Ia, PJ of I k' and as before, g~k11 ,... , g~k) are linearly independent
on Ia, P[. At the end, lao' boI= In' and the g k are the elements of the last
basis.

For sets S with the above properties, we have

THEOREM 9 ("Markov's inequality"). For each I> °there is a constant
C/ which depends upon I and S and decreases as a function of I, with the
property that for each linear combination P of the functions gk' and each
subinterval [a, PI of [a, b] of length ~/,

IIPII[a,6I = max IP(x)l·
a4x,;;6

(4.1 )

Proof We can subdivide la, b] into intervals I j = [a + jfJ, a + (j + 1)fJ],
j = 1,.. " P in such a way that each interval [a, P] of length ~I contains one of

the I; (it is sufficient to take fJ = (b - a)/p ~ 11). The norm IIPI11a,IJI of the
restriction of P to [a,p] is not less than the norm IIPll j of Pin C[IJ Since
the correspondence I:~ Ckgk -4 I:~ ckg" maps the (n + 1)-dimensional linear
space spanned by the gk in C[Ii] linearly into the space spanned by the g" in
CiI; I linearly into the space spanned by the g" in Cia, b], it has a finite norm
N;, Therefore,

The constants C / will decrease as functions of I, if we chose each of them to
be best possible in (4.1).

LEMMA 10. For each I> °there is a number d = d(l), °< d ~ 1, with
the property that if P(a) = P(P) = 0, a, PE [a, b I, P- a ~ I, then at least one
point a + d < ¢ <P- d satisfies P'(¢) = 0. The function d(l) is monotone
increasing in I.

Proof We can assume that P is not identically zero on [a, Pl. Let ¢ be
the point on (a, /1), where IP(x)1 attains its maximum M = II PI11a,IJ,' Then
pi (¢) = 0, On the other hand,

Therefore ¢ - a ~ C/- I, and likewise P- ¢ ~ C/- I
, We select

d(l) = min(C/- 1
, ~/).
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Remark. For algebraic polynomials of degree ~n, the best value
d(/)=d,,(/) has been found by Turim [91. If n is even, d,,(l)=,!1
(I - cos n/n), and for any n, d,,(/) :::::: (/n'/4)n '.

For the system S'kl, Theorem 8 and Lemma 9 produce a number dk(l).
Taking 15(/) = mino k "dk (/), we obtain, for given Sand n:

THEORI'M II. There is a monotone increasing function (j(/), 0 <(j(l) ~ '!I
such that iflJ - u ;;; I, a <u < fJ <band pikl(U) = plki(fJ) = 0 for some P and
k, k = 0,.... II I. then there exists a .;, II ,(5(1) <~ <IJ 15(1), for which
p(kl(~) = O.

5. INDEPENDENT SETS OF KNOTS

Let S be a system of functions on [a. b I, satisfying the assumption of
Section 4. A set of knots X = ~x I , .... x"'? c [a. b I is called independent with
respect to S. if for each interpolation matrix E, each polynomial P
annihilated by E, X has a Rolle extension .il with all new Rolle zeros ~

different from the x k • As we know from Section 2, this .il will be maximal
and have no duplications. Lemma 3 yields then that the total number of (new
and old) Rolle zeros of p'k) in .il is exactly f.1k'

The construction of independent sets of knots is based on the technical
lemma below. Without loss of generality, let a = I. b = 1. We take
0< YI < I arbitrarily and choose Yj') = 2, 3.... to increase rapidly to I, with
the following restrictions. If Lf(u) = tr5(u), where r5(u) is the function of
Theorem II, then we require that 0 < Yi ] < Yj and

1-- Yj <Lfll(Yi - Yi ]). ) = 2. 3,.... (5.1 )

Since Lf(u) = ,!r5(u) < I and Lf(u) is increasing, it follows that

1- Yj<Lf(Yj -- Yi ]) < (j(Yi- Yi I)'

We also select numbers Ij satisfying

(5.2)

) = 2,3 ..... (5.3 )

and put I; = Lf(/j)' ) = 2, 3,... ; in general. I; are much smaller than Ij' for
Lf (u) <iu. We shall take X to contain some of the points ± Yi' and will take
care to select the new Rolle zeros ~ of X k to be different from these points.
This will follow because the ~ will be even outside of small intervals
(Yi-c'Yjlor [-Yi'-Yj+E).

LEMMA 12. Let 0 < p < I. and let s be so large that p ~ Y,. let s + 2 < t.
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Assume that P is a polynomial in S annihilated by E, X, and that the knots X
and xk for a Rolle extension. ilk = (E k

, X k
) are contained in

[-p,p[ U IYt, 1 U [-1, -.l't[

but miss all intervals

(5.4 )

(Yi -Ii' Yi)' (-Yi' -Yi + Ii)' j = I, I + 1,,,,.

LeI p <pi = .1', I' Then there is a Rolle extension (E k
f " X k

T ') so thaI X k
, ,

is contained in the set

I-p',p'[ U [.1'" 1[ U 1-1, -.I',l (5.5)

and that the Rolle zeros selected between adjacent zeros of xk miss the
intervals

(Yi -lj, Yi [, [-Yi' -Yi + I;),

Proof Because of the choice of pi,

j = t, t + I,,, .. (5.6 )

1 - r5(p' -p) <p'. (5.7)

Let a < fJ be two adjacent zeros of X k
• By means of Rolle's theorem, we

shall find a zero ¢ of p1k+ I) of required kind.

(a) If a ~ p, fJ >p, or a < -p, fJ ~ -p, then ¢ can be found in (~_p', pi).
Indeed, the length of (a, fJ) is at least p'- p. By Theorem 11, we find a Rolle
zero ¢ for which

¢ < fJ - r5(fJ - a) < 1 - r5(p' - p) <pi;

similarly, ¢ satisfies ¢ > _p'.

(b) The zeros of X k fall into three groups: zeros cotained in [-p, p ], those
in 1-1, -Yt] and those in [yl' 1]. If a, fJ belong both to the first group, then
(a) shows that we can take ¢ E [_pi, pi]. This is still true, again by (a), if
a, fJ belong to different groups. If a, fJ belong both to the second or the third
interval, then also ¢ belongs to this interval.

(c) In the last case, we have still to show that ¢ can be selected to miss
(5.6). We can assume that Y I ~ a < fJ. None of the intervals (Yi -Ii' yJ
contains a or fJ, hence each of them is either contained in the interval (a, fJ)
or disjoint with it. If the first possibility does not occur, we are through. In
the opposite case, let j be the smallest integer j > I for which

(Yi - Ii' Yi) c (a, fJ). We shall find a ¢ < Yi - lj, thus completing the proof.
By Theorem 11 there is a ¢ satisfying
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From (5.1) and (5.3),

Hence

G. G. LORENTZ

COROLLARY 13. Let the knots X be only among the points ±Yi'

j> s + 2. or in I-p, p I, and suppose that the rows of E which correspond to
knots Xi ,-p ~ Xi ~ p, have no odd supported sequences. Then the
construction of x k

I , of Lemma 12 will be without losses also in I-p, p j, with
duplications possible only in this interval. Moreover, Rolle zeros in
I, = I-I, -Y I .21 or in 12 = IYI .2' 1] will be produced by zeros only from the
same interval; all other Rolle zeros will belong to I' = I-YI '" Y, ,I.

We can apply Lemma 12, Coollary 13 and Lemma 2 to all derivatives
Plkl. k = 0,... , n - I. In this way we obtain the following formulation of the
method of independent knots.

THEOREM 14. There exist numbers p = YS' pi, P <p' < I and an integer
t > s with the following properties. Let 1= I-p, p I, I' = I-p, p' I.
I, = I-I. -Y,I, 12 = Iy" II· Let X be a subset of I U 1± YI' ± YI +-, ,... f, and
let E be an m X (n + I) interpolation matrix with no odd supported
sequences in the rows corresponding to knots Xi E I. Then each polynomial P
ill S annihilated by E, X has a maximal Rolle set .ff' with duplication
possible only in I. Moreover, all Rolle zeros are contained in I' U 11 U 12 ;

those in I) (or in 12 ) are produced only by zeros of the same interval; Rolle
zeros produced with participation of one of the zeros in I) (or 12 ) lie in
1-1, p I (or in I-p, 1D· The total number of zeros of p(/) in .J? is equal to ,ill

if X has no points in I. (If there is just one such point, Corollary 4 may
apply).

One can also assume that each P annihilated by E, Y, Y c l' l) 1± Y, ,... 1

has a maximal Rolle set, if E has no odd supported sequences for knots in 1'.
This is proved by applying Lemma 12 and Corollary 13 in turn to

P,P', ... ,p<n II. At the kth step, we select li=lik=Jk(Yi- Yi J) and have

l'j = JUik) = li,k +"

THEOREM 15. For a given system S there exists an infinite sequence
Y cia, b I with the property that each finite set Xc Y of m points is an
independent set of knots for each m X (n + I) interpolation matrix.
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For Y we can take each of the two sets
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The three points -1 < x < 1 are independent, if x is sufficiently close to --I
or l.

6. BIRKHOFF SYSTEMS

It is interesting to investigate systems S for which Theorem B-the Atkin­
son-Sharma Theorem remains valid. We call S = 1go ,.... gn f a BirkhofJ
system if each P6lya matrix E which has no essential odd supported
sequences. is regular with respect to S.

THEOREM 16. A system S = {go ,... , g nf is a BirkhofJ system if and only
if equations

a <x k <b. k = 0.... , n, (6.1 )

for a polynomial P in Simply P == O.

Proof This is sufficient. Let P be annihilated by E, X, where E is a
P6lya matrix, and let E = E 1 8:) ... 8:) Eli be its canonical decomposition into
matrices without odd supported sequences. If the last column of E\ is Ill' we
obtain from Lemma 3 that (6.1) is satisfied for 0 <k <nI' Next, pIn I + I) is
annihilated by E 2 , and in the same way we get (6.1) for n1 < k <n2 , and so
on. Thus P == O.

The condition is necesaary, for Eqs. (6.1) mean that P is annihilated by a
matrix (an Abel matrix), whose canonical decomposition consists of one
column matrices.

Another form of condition (6.1) is that none of the determinants

should vanish. As a simple application of this, the system
S = 11,..., x k

-I. gk"'" gnf is a Birkhoff system exactly when {glk),... , g;,kl f is
a Birkhoff system.

There are relations between Chebyshev and Birkhoff systems.

PROPOSITION 17. (i) A BirkhofJ system is an extended Chebyshev
system; (ii) Iffor a system offunctions S the Wronskian

(6.3 )
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does not vanish identically, in particular if S is an extended Chebyshev
system, then S is a BirkhojJ system locally, that is, a BirkhojJ system on
some closed subinterval Ia, PI of Ia, b I·

Proof (i) If a polynomial P in S has n + I zeros, counting their
multiplicities, then by Rolle's theorem one obtains (6.1), hence P,,= 0, since
S is a Birkhoff system. (ii) If W(.Y) '* 0 for some x E [a. b I, then the deter
minants (6.2) are different from zero if all X k are close to K

EXAMPLE. S = jx", x LJ t. where 0 < a ~ P is a Chebyshev system on
la, b 1,0 < a if and only if a < P, and this is equivalent to regularity of 2 X 2
Birkhoff matrices with respect to S, but S is a Birkhoff system exactly when

(bla/, "< Pia.
A matrix E is conditionally regular for a system S on [a, b I if one can

find a set of knots X cia, b I which is regular with respect to E (for which
the pair E, X is regular).

Remark 19. For Birkhoff matrices, we can complete the statements of
Lemma 2 as follows: (a) If P is annihilated by a pair E, X which has a
maximal Rolle extension, and if E satisfies the Polya condition M{ ~ I + I.
o~ I~ ko, then p(/)(z,) = 0 for some z" 0 ~ I ~ ko' If k o = n, then P "= O. (b)
The same happens if in addition to the assumption, also pUn) is annihilated
by a pair Y, F with similar properties for ko < I ~ n. (c) For a Polya matrix
E, we have the regularity of the pair E, X in Theorem 14.

With Windhauer 110] we can apply independent knots to the study of
conditional regularity.

THEOREM 20. Each P61ya matrix E is conditionally regular with respect
to a BirkhojJ system S, and also with respect to a system S for which the
Wronskian W(x) is not identically zero.

Proof Let S be a Birkhoff system on a subinterval [a,PI of la, bl. By
Theorem IS we can find independent knots U: u 1 < ... < urn in [a,PI. If Pis
annihilated by E, U, then this pair has a maximal Rolle extension, conse
quently plk)(Xk ) =0, k=O,... ,n for some xkE la,pJ. Then P==O. Conse
quently, U is regular with respect to E. The second statement follows from
Proposition 17 (ii).

7. THE MAIN SINGULARITY THEOREMS

In this and the next section, we formulate and prove our main singularity
theorems. We should mention that this proof can be somewhat simplified by
coalesing the matrix E to three rows. In this way, intervals JI' I! which
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appear below. would become single points -I. + I. The essential points of
the proof would. however, remain unchanged.

A single one in a row of E (and this row itself) will be called a singleton.
A singleton is an odd sequence, which may be supported in E or not. We
begin with the simplest theorem:

THEOREM 21 (Lorentz and Zeller [71). A BirkhojJ matrix is strong(l'
singular if it contains a supported singleton.

There is an immediate generalization:

THEOREM 22 (Lorentz 141. A BirkhojJ matrix is strong(v singular if it
contains a row with precisely one odd supported sequence (all other
sequences oj this row being even or not supported).

By the localization theorem (Proposition 17 (ii)), both theorems hold also
for extended Chebyshev systems. Thus, two localization theorems,
Proposition 8 and 17 were used to obtain this conclusion.

We prefer to prove first Theorem 21, because this proof is simpler,
illustrates our method. It is also (at least formally) not contained in the proof
of the general Theorem 22. Throughout the proof the system
S = 1go. g, ,...• g n) will be a Birkhoff system on Ia. b I·

ProoJ oj Theorem 21. Let E be an m X (n + 1) Birkhoff matrix which
has a supported singleton ei,{J = 1 in the interior row i o. We denote by Eo, E,
matrices derived from E by omitting the row i o• or by replacing it by
(1,0.... , 0) respectively. We use Theorem 14 and place knots Xi' i < io into
fixed independent positions in the interval II =.[-1. -Ytl, knots Xi' i> io into
similar positios in 12 = 1Yr' 11. To this set of knots X o we add a variable
knot X E I = I-p. p I, to obtain the set X.

According to Theorem ~ and Remark 19 the pair E, , X is regular, hence
P(x) = D(E I' X) =/=- 0, X E I. The function P(x) is a polynomial in X and it is
clearly annihilated by Eo. Xo' This pair has a maximal Rolle extension .JP.
We want to find a point x = ~ E I of ,91'l for which

(7.1 )

It is sufficient to find an I <q for which p(/) has zeros of c9l both in I, and
f 2' then the Rolle extension would produce a required ¢". If an I of this type
would not exist, then for each 1< q, Rolle zeros would be either all in I, or
all in 12 , The Birkhoff condition, which is satisfied for I < q, yields at least
two zeros of p(l). Let for 1=0 all of them be in II' Rolle's theorem produces
a zero of pi in I, • hence all Rolle zeros of pi, and similarly for p(/), I < q lie
in this interval. This is impossible, since the supporting one from the right
gives a zero in 12 ,
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Since D(x)=D(E,X)=P<4 J(x), we see from (7.1) that E is singular. To
establish strong singularity, we have to show that D(x) changes sign at ~.

This is so because ~ is a simple zero of p<ql = D. For otherwise we could add
the one ei ".,/ . J = I to E, omitting a one in another now. By Remark 19, the
new matrix and X would be a regular pair, and we would obtain P == 0, a
contradiction.

8. PROOF OF THEOREM 22

After proving Theorem 2 L we can assume that the row io of the Birkhoff
matrix E which contains a supported odd sequence, has at least two ones.
Let ei,,, = I be the first one of the sequence. We denote by Eo the matrix
obtained from E by replacing this one by zero, by E', E'. Elf, Elf matrices
consisting of rows i < io, i <ill' i> in' i) io of Eo, and by fl.;, f.1;, fl.;', f.17, PI
the functions f.1 of Section 2 for the last five matrices. Obviously, fl.; <f.1;,
ii;' <f.1;'.

To be able to use Theorem 14, we assign to Xi' i < io and i> ill
independent positions ±.vi in the intervals 1),12 , To this set X o we add the
knot xi,,=x in I=I-p,pl; let X=XoU(x). In addition, let -p'<y<p',
for y E X let Y = XU (.1'), further let E) be the matrix obtained from Eo by
adding the row (1,0,... ,0) between rows ill and io + I. Then P(x. y) =

D(E J' Y) is a polynomial in X and y. For a fixed x, it is a polynomial P( y)

in y, and the structure of the determinant shows that P(y) is annihilated by
Eo' X. Since the matrix E) has no odd supported sequences for knots in
I-p'. p' ), the pair E I' Y is regular by Remark 19(c); thus P(y) = 0 for y "* x.

We consider the derivative aqPjaqy = p(ql(y) = p(q)(x• .1'). Since

P,q)(x. x) = D(E, X), (8.l)

singularity of E will be established, if we show that for some x, the equation

(8.2)

is satisfied for y = x. We are thus led to consider solutions y of (8.2) for
fixed x. We can say at once that for x = p (or x = -p) this equation has no
solution y = p (or, correspondingly, y = -p). For if x = p, X is independent.
and D(E, X) = p(q)(P, p) 01- 0 by Remark 19(c).

By Theorem 14, there is a maximal Rolle extension .~ of the pair (Eo, X)

that annihilates P. For this extension, Rolle zeros y produced by pairs of
knots other than those confined to I, or to 12 , lie in I-p', p' I. This explains
our choice of the domains of the variables. -p <x <p, -p' < y <p'.

Let t be the number of solutions of (8.2) for a given x. in other words, the
number of Rolle zeros of plq) in l-p',p'l. Rolle zeros of pfiJ of # in the
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intervals 11' 12 , are produced (by Theorem 14) by knots in these intervals
and by matrices E', E". Their numbers are iii, iii', 1= 0,... , n. One cannot
claim that /1/ is the total number of Rolle zeros of pl/). However. for / = q
this is true by Corollary 4. Hence

t = /1'1 - ii:, - ii;; . (8.3 )

We see that t is independent of x. We also have t) 1. This can be deduced
by the argument in the proof of Theorem 21. Alternatively, we have

(8.4 )

and by Theorem 5. a) 1.
Let

(8.5)

be all Rolle zeros of P('l\y) contained in [_pi, pi J. We claim: (a) p('l\y) has
no other zeros in [-p, p J; (b) each of the zeros (8.5) is simple except perhaps
the zero Yo(x) = x; (c) If there is a zero Yo(x) = x, it has an odd multiplicity
(equal to the length of the sequence containing eio'l = 1). Indeed, Eo is an
m X 11 P61ya matrix, and in the Rolle extension (E6' X'l), E6 is a P61ya
matrix with n - q columns (and zero column numbered n + 1 - q). If one of
the above statements were not true, we would be able to add to EZ an
additional one, obtaining a new P6lya matrix with n + 1 - q ones and
columns, which annihilates p('l) and has no odd supported sequences for
knots in I-p', pi]. By Remark 19(b) we would obtain P == 0, a contradiction.

Since the function P(x, y) is continuous, it is now easy to prove the
continuity of the zeros (8.5).

To prove the singularity of E, we have to show that for some s, one has
Ys(x) = x, for a certain x E I, in other words, that one of the curves (8.5) in
the rectangle -p:;( x :;( p, _pi :;( Y :;( pi intersects the line y = x (see Fig. I).
It is not obvious that this intersection exists, for there are intervals on the
lines x = ±p through which the curves could escape. [This remark applies
also to the proof which uses coalescence to three rows. If x, y charge in the
open interval (-1, 1), the intersection must lie in the open square. The curves
still could escape through the corners of the square-a point missed in [21 j.

Let N(x), -p:;( x:;( p be the number of Ys which satisfy y, > x. We can
find N(P): this is the number of Rolle zeros ~ of p('l)(P, y) which satisfy
p < ~ :;( p', or equivalently p:;( ~ :;( p'. Now Rolle zeros ~ in [p, 1] are
produced by the matrix E" and the independent knots p = Xi , ... , x m • Their
number (by Theorem 14) is /.l~. The ~ with ~ > pi are produced h E" and the
knots Xi" t I'"'' x m ' there are ii~ of them. Hence

N(P) =/.l~ - ii~.
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Next let x = Xi" =-p. The number of y, > ~p is equal to the numbt:r of
Rolle zeros ~ of p(q)(-p, y) with -p ~ ~ ~ p'. Here again, the knots x I"'" x m

are in independent positions, and we can find the numbers of different types
of ~ by means of Theorem 14. Their total number is fJq. Zeros ~ < -p are
produced exclusively by the knots Xl"'" Xi" = -p and the matrix E' , their
number is fJ~. The number of ~ with ~ >pi is ji~. It follows that

N(-p) =fJq - fJ~ -ji~.

This yields

(8.6 )

By Theorem 5, a? I. Thus, at lest a curves yJex:) cross the line y = x inside
te interval [-p, p I. The curves (8.5) divide the rectangle -p ~ x ~ p.
_pi ~ Y ~ pi into t + 1 regions with P(ql(X, y) alternating in sign from region
to region. The point (x, x) moving on the line y = x crosses a + I of the
regions; the points (--p, -p), (P, p) are not on the curves. This means that
D(E, X) changes sign a times as x moves on I-p, pI.

9. HISTORICAL NOTES

I. I have communicated a proof of Theorem 22 (for ordinary singularity)
to K. Zeller in the Summer of 1969 and have presented it at the Annual
Meeting of the AMS in January 1970 in New Orleans. An abstract has
appeared in the November 1969 issue of the Notices of the American
Mathematical Society [4]. My paper [31, with the proof, has been submitted
to the Journal of Approximation Theory in March 1970 (written
communication of O. Shisha to me); this date does not appear on the paper
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itself. Unfortunately, paper [21 of Karlin and Karon, submitted in December
1970. appeared in the Journal of Approximation Theory earlier than [31·

2. In April 1970 I was invited to Stanford to give some lectures. There
Professor S. Karlin told me that he was about to prove the "Atkin­
son~Sharma conjecture" (that a Birkhoff matrix with an odd supported
sequence is singular). I showed him the preprints of [71 and 13]. Later he
told me that he could prove Theorem 22 more simply by his new method
(which he did not describe to me). I have received from him a proof in
writing in December 1970. The proof presented in this paper was written
down in 1974 and appeared in 1975 [51.
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